-

![Rendered by QuickLaTeX.com \[ \frac{2}{3} x^3 + 2x^2 - 5x + C \]](http://contohsoal.org/wp-content/ql-cache/quicklatex.com-20bce3e08136daef71b48dbe9e0b2cf3_l3.png)
-
![Rendered by QuickLaTeX.com \int 5x \sqrt[3]{x^2} \: \mathrm{d}x = \dots](http://contohsoal.org/wp-content/ql-cache/quicklatex.com-3eb2564e3ab976b391332e28e4898064_l3.png)
![Rendered by QuickLaTeX.com \begin{align*} \int 5x \sqrt[3]{x^2} \: \mathrm{d}x &= \int 5x \cdot x^\frac{2}{3} \: \mathrm{d}x \\ &= \int 5x^\frac{5}{3} \: \mathrm{d}x \\ &= 5 \cdot \frac{3}{8} \cdot x^\frac{8}{3} + C \\ &= \frac{15}{8} x^2 \sqrt[3]{x^2} + C \\ \end{align*}](http://contohsoal.org/wp-content/ql-cache/quicklatex.com-a1a476badbb2c3d3f52d227ff3754c78_l3.png)
-


-


-
Sebuah kurva mempunyai turunan
. Kurva tersebut melewati titik
. Tentukan persamaan kurva tersebut.- Pertama cari dahulu integral dari turunan
![Rendered by QuickLaTeX.com \[ \int 3x^2 - 2x \: \mathrm{d}x = x^3 - x^2 + C \]](http://contohsoal.org/wp-content/ql-cache/quicklatex.com-57c8af9a815d93f4031463079db9c0b0_l3.png)
- Selanjutnya cari nilai C dengan memasukkan titik
ke persamaan
Jadi Persamaan kurva tersebut adalah

- Pertama cari dahulu integral dari turunan
-


-


-
Ingat bahwa :
![Rendered by QuickLaTeX.com \begin{align*} \int (a^\frac{1}{3} - x^\frac{1}{3})^3 \: \mathrm{d}x &= \int (a^\frac{1}{3})^3 - 3(a^\frac{1}{3})^2x + 3a(x^\frac{1}{3})^2 - (x^\frac{1}{3})^3\: \mathrm{d}x \\ &= \int a - 3a^\frac{2}{3}x + 3ax^\frac{2}{3} + x \: \mathrm{d}x \\ &= ax - 3a^\frac{2}{3} \cdot \frac{1}{2}x^2 + 3a \cdot \frac{3}{5} \cdot x^\frac{5}{3} - \frac{1}{2}x^2 + C \\ &= ax - \frac{3}{2}a^\frac{2}{3}x^2 + \frac{9}{5}ax^\frac{5}{3} + C \\ &= ax - \frac{3}{2}\sqrt[3]{a^2}x^2 + \frac{9}{5}ax\sqrt[3]{x^2} + C \end{align*}](http://contohsoal.org/wp-content/ql-cache/quicklatex.com-82a534bc673fc7c8833e08f6a8c33f43_l3.png)
-


-
Ingat bahwa :



Posting Komentar